CAT 3 Basketball Court Shapes

Introduction

- In this CAT we are measuring different shapes in our basketball court to work out their perimeter and area. Then we will compare the measurements of our court to an international court.

Aim

To measure the area and perimeter of various shapes on the school basketball court.

Method

- First we filled out a glossary on mathematical terms.
- Next we measured the lines of the basketball court.
- Then we worked out the perimeter and area of the shapes we had measured.
- After that we got the measurements for a international size basketball court.
- We then worked out the area and perimeter of that.
- Finally we compared the measurements of the international size and the school court size.

$$
20
$$

Use the Basketball Court

 diagram to describe how many shapes you can see.Name the shapes and state the formulas you need to discover the area.

Rectangle	Length x height
Circle	$\Pi \times$ diameter
Semi-circle	0.5 x radius ${ }^{2} \mathrm{x}$ п
Trapezium	0.5 x(top + bottom) x height

Perimeter $=28 \mathrm{~m} \times 2+15.10 \times 2$

$$
=86.2 \mathrm{~m}
$$

$$
\text { Area } \quad=28 \times 15.10
$$

$$
=422.8^{2} \mathrm{~m}
$$

Perimeter
$=14 \times 2+15.10 \times 2$
$=58.2 \mathrm{~m}$
Area
$=14 \times 15.10$
$=211.4 \mathrm{~m}$

Perimeter$=0.5 \times \pi \times 9.84+9.84$

$$
=25.3
$$

Area

$$
=4.92^{2} \times \pi
$$

$$
=76.05 \mathrm{~m}^{2}
$$

Perimeter
$=3.54 \mathrm{x} \pi$
$=11.12 \mathrm{~m}$
(
Area
$=1.77^{2} \times \pi$
$=9.84 \mathrm{~m}^{2}$
3.54 m

Perimeter

$$
=6.06+5.4+5.4+3.54
$$

$=20.4 \mathrm{~m}$

> Area
> $=0.5 \times(6.06+3.54) \times 5.4$
> $=25.92 \mathrm{~m}^{2}$

$$
\begin{aligned}
& \text { fence thad to find how much } \\
& \text { enclose the needed to } \\
& \text { court } 4 \mathrm{~m} \text { high. } \\
& \text { Answer basketball } \\
& \text { a height of } 4.8 \mathrm{~m} \text { of fencing at } \\
& \text { Perimeter- } 86.2 \\
& =86.2 \times 4 \\
& =344.8
\end{aligned}
$$

If you had to
court to a do resurface the
0.5 meters, heth of 0.5 meters, how th of
asphalt would much you need?
Answer =211.4m3
$28 \times 15.10 \times 0.5$
$\times h$

Special Areas

Working out

AREA Shaded on the left

Large Semi circle $=76.05 \mathrm{~m}^{2}$
Trapezium $=25.92^{2}$
Small semi circle $=4.92^{2}$
$76.05-(25.92+4.92)$
$=76.05-30.84$
$=45.21 \mathrm{~m}^{2}$

Working out

AREA Shaded on the left

Trapezium $=25.92^{2}$
Small semi circle $=4.92^{2}$
$=25.92-4.92$
$=21 \mathrm{~m}^{2}$

Special Areas 2

Working out AREA Shaded

Whole rectangle $=422.8$
Large Semi Circle=76.05 x 2
Small Semi Circle $=4.92 \times 2$
(76.05+4.92)x2
$=161.94$
=422.8-161.94
$=260.86 \mathrm{~m}^{2}$

Website used?

Add in the website that you found the dimensions for the international court:

Fill in the information in diagrams from your web information

Perimeter $=15+15+28+28$

$$
=86 \mathrm{~m}
$$

$$
\text { Area } \quad=28 \times 15
$$

$$
=420 \mathrm{~m}^{2}
$$

$=28+30$
$=58 \mathrm{~m}$

Area
$=14 \times 15$
$=210 \mathrm{~m}^{2}$
Perimeter

$$
=6.25 \times \pi+12.5
$$

$$
=32.13
$$

Area

$$
=0.5 \times 12.5
$$

$$
=6.25
$$

$$
=0.5 \times 6.25 \times \pi
$$

$$
=61.36 \mathrm{~m}^{2}
$$

Perimeter
$=\pi \times 3.6$

$=11.31$

Area
$=1.8^{2} \mathrm{x} \pi$
$=10.18$

Perimeter
 $$
=6+5.8+5.8+1.8
$$
 $$
=19.4 \mathrm{~m}
$$

5.8 m

Area

$$
=0.5 \times(6+3.6) \times 5.8
$$

$=27.84 \mathrm{~m}^{2}$

Comparison

You need to compare the area/perimeter of both our court and the official size.

Perimeter comparison

Shape	Size (our court)	Size (international court)
Large Rectangle	86.2 m	86 m
Small Rectangle	58.2 m	58 m
Middle Circle	11.12 m	11.31 m
Trapezium	20.4 m	19.4 m
Three Point Line	25.3 m	32.13 m

Area comparison

Shape	Size (our court)	Size (international court)
Large Rectangle	$420 \mathrm{~m}^{2}$	$420 \mathrm{~m}^{2}$
Small Rectangle	$210 \mathrm{~m}^{2}$	$210 \mathrm{~m}^{2}$
Middle Circle	$9.84 \mathrm{~m}^{2}$	$10.18 \mathrm{~m}^{2}$
Trapezium	$25.92 \mathrm{~m}^{2}$	$27.8 \mathrm{~m}^{2}$
Three Point Line	$76.05 \mathrm{~m}^{2}$	$61.36 \mathrm{~m}^{2}$

